
ETMS System Design Document
Version 6.0

30-1

Section 30

Schedule Data

Processing

This section describes how the Schedule Database (SDB) is built. The flight schedules are
received every Wednesday by FTP across the Internet from Official Airline Guides (OAG).
The information is transferred to the HP/Apollo system, cleaned up, and then combined with
other data files, and possibly a subset of the previous SDB to form the current SDB. The
programs and scripts described in this section are run as part of the weekly cycle. Figure 30-
1 shows the data flow diagram for the SDB data processing.

Flight Plans
oag data

SDBPrevious SDB

Route DB

make_sdb

create_sdb_
indices

artcc codes
airports

field 10s
airport/artcc codes

field10s
airport/artcc codes schedules

arrival times
schedules
eff/dis dates
arrival times
aircraft type

time table
flight id index
added flights list
inhibited flights list
canceled flights list
air carrier index
arrival airport index
departure airport index

country,
airport

alpha
suffixes

ddc

geo.
data

airlines
array

airports
array

acft_type
array

flight #
changes

Figure 30-1. Overview of the Build SDB Data Flow

Section 30.2 describes the make_sdb process, which creates the data file containing the flight
schedule information. Section 30.3 describes how the indices are built by sdb_create_indices
and shows the structure of the various indices. The indices are used by various processes to
gain quicker access to the flight information in the SDB.

ETMS System Design Document
Version 6.0

30-2

ETMS System Design Document
Version 6.0

30-3

30.1 OAG Schedule Data File Processing

The shell script build_sdb.313.ksh under the menu system is used to create the directory if it
does not already exist, to create links, to copy scripts and program files to it, and to invoke
both make_sdb and sdb_create_indices. By convention, the OAG file name is in the form
oag.yy_mm_dd in directory monb04/etms/weekly_build/data/oag/yy_mm_ dd.comm.

A DOS FTP script is used on a PC connected to the Internet, but not to the network, to
verify that a new OAG file exists, to download it, decompress it and place it on a Zip disk.
The Zip disk is transferred to a PC which is connected to the network (but not to the
Internet), from which it is FTP'd to monb04/etms/weekly_build/data/source. The script uses
the UNIX utility tr to remove the extraneous end-of-file character ^Z, which is appended by
DOS. The script creates the directory monb04/etms/weekly_build/data/oag /yy_mm_dd.comm
if it does not already exist, and copies the routes, bfpsd data and other data files into it.
make_sdb creates the SDB as a set of in-memory hash-files.

The script merges cancel and inhibit information from the specified old SDB with the
information from the current OAG data file if the old SDB files are found. If not, it generates
the SDB entirely from the current OAG data file. The script has in-line code to generate the
argument files needed by the programs that it executes.

The make_sdb program creates the sdb.map file, 2 indices files, the aux_arr_airport.map file
and the add_list.map file. The sdb.map file is a linked list, sorted by departure time, which
contains most of the information relating to each flight ID. The aux_arr_airport.map files
consists of pointers to the sdb.map file, sorted by arrival time and flight ID.

The sdb_create_indices program uses the above files to create a number of index files, at
which point all the map files that comprise the SDB exist. The sdb_to_cfceds.553 shell script
is used to send (with changes in names) the SDB to FSC in Herndon, VA, and the shell script
prepare_to_copy_sdb.406 is used to copy the SDB files (with changes in names) to the
desired destination string.

30.2 The Make_sdb Process

Purpose

The make_sdb process creates the principal file of the schedule database, the schedule file,
which is sorted by departure time and flight ID. It also creates the effective/discontinue dates
file and associated linked list file.

Execution Control

Make_sdb is run when a new OAG schedule data file is received (once every week) and
transferred to disk. Make_sdb can be executed with zero to three parameters. If it is invoked
with zero parameters, the input and output file names are read from the default file
make_sdb.fnames. The first parameter is the name of the file that contains the pathnames of
input and output files when the default file is not used. The second and third parameters are

ETMS System Design Document
Version 6.0

30-4

used only for testing purposes. The program can create a partial database; the second
parameter is used to stop the reading of the OAG data file with the specified record. The
program normally rejects records whose discontinue data is earlier than the build date. To
compare builds made at different build times, the third parameter can be used to reset the
build time to a specified Julian date.

Input

Make_sdb reads the following ASCII files:

• OAG data

• Alpha suffixes

• Dual designated carriers

• Flight ID number change

• Country, Airport (, Airport Pair, or Airline)

Make_sdb also reads the following map files. Note that the airport alias, airlines, and aircraft
type files are hash map files (hence of fixed size), with a non-zero offset. A number of other
files have their size internally specified:

• Aircraft categories

• Airport alias

• Airports with ARTCC codes

• Field 10s

• Routes

• Previous aircraft categories

• Previous airlines

• Previous aircraft type

• Previous schedule

• Previous effective/discontinue dates

• Previous effective/discontinue dates linked list

• Previous canceled flights list

• Previous inhibited flights list

ETMS System Design Document
Version 6.0

30-5

Output

Make_sdb creates the following map files. Note that the airlines and aircraft type are hash
map files (hence of fixed size), with a non-zero offset:

• Airlines

• Aircraft type

• Schedule

• Effective/discontinue dates

• Effective/discontinue dates linked list

• Arrival times

• Canceled flights list

• Inhibited flights list

Make_sdb also generates the following ASCII files:

• Error log

• Schedule source

• Airlines array

• Aircraft type array

• Airports array

The routes and field 10 files are generated by the route_db program (see Section 31).
Informative errors are entered to the error log file. An ASCII image of some of the fields in
the schedule file is written out to the Schedule source file. The Arrival times file contains the
offsets to the schedule file records, sorted in arrival time order. The aircraft type array,
airlines array, and airports array files are written as sorted ASCII arrays. The arrays are used
as input files by the grid build process (see Section 29), which generates the codes file,
which is used as an input file by the Request Server.

The structure of the Schedule file is shown in Table 30-1.

Processing

Make_sdb opens the default or first parameter file and reads the names of all the input and
output files. It reads the first four lines of the OAG data file, which contain a date and the
copyright notice (the format of the remainder of the OAG data file is described in Table 30-
2).

ETMS System Design Document
Version 6.0

30-6

Make_sdb uses this date as the effective start date and uses it to calculate the discontinue date
if that field is blank (but OAG is now putting the effective and discontinue dates on every
record, so there should be no blank fields).

ETMS System Design Document
Version 6.0

30-7

Table 30-1. Schedule File Data Structure

SDB file
Library Name: sdb_openlib Purpose: Contains the OAG scheduled flight information

 (sdb.map)
Element Name: sdb.h

Data Item Definition Unit/Format Range Var.Type

 Record # 1
Bytes 1-46 Not used in first record - - -

event_route_off Contains length of file in bytes Bytes - long

next_sdb Offset to first entry in SDB, in
or-der of scheduled departure
time

Map file offset - long

 Record # 2 - n
sched_dep_time Scheduled departure time GMT -1 to 2359 short

flight_id Flight ID aaannnn - string7

leg_ind Leg indicator a - char

dep_ap Departure aiport aaaa - string4

arr_ap Arrival airport aaaa - string4

sched_arr_time Scheduled arrival time GMT -1 to 2359 short

ete Estimated time en route Minutes -1 to 1440 short

acft_cat_offset Offset into aircraft categories
map file

n - long

acft_name_index Aircraft name, table driven nu-
meric code

n - short

eff_dis_dates_off Offset to effective discontinue
dates, linked list of indexes

map file offset - long

ETMS System Design Document
Version 6.0

30-8

Table 30-1. Schedule File Data Structure (continued)

SDB file, continued
Data Item Definition Unit/Format Range Var.Type

status_bits Status bits - - short

Taxi, air taxi (commuter or intra-
state)

1 = yes, 0 = no 0 – 1 bit 15

Flight canceled 1 = yes, 0 = no 0 – 1 bit 14

Flight added (using (FPSD) 1 = yes, 0 = no 0 – 1 bit 13

Deleted flight (for deleting
added flights)

1 = yes, 0 = no 0 – 1 bit 12

Flight is inhibited 1 = yes, 0 = no 0 – 1 bit 11

Overflight, flight over US, but
arr. & departure not from US
airport

1 = yes, 0 = no 0 – 1 bit 10

Flight code for domestic or
inter-national carrier †

n 0 – 4 bits 7 – 9

Days of week that flight
operates on ‡

1 = if flight is
scheduled

0 – 1 per bit bits 0 – 6

flight_history List of scheduled days that
flight actually flew §

1 = day in month
that flight flew

0 – 1 per bit long

Inhib_dates_offset Offset to inhibit/activate Julian
dates linked list

n - long

avg_delta_dep_time Filtered delta, actual dep time-
scheduled departure time §

Minutes 0 – 32767 short

avg_delta_arr_time Filiter delta, actual arr time-
scheduled arr time §

Minutes 0 –32767 short

event_route_off Offset into event route
database §

Map file offset - long

next_sdb Offset of next entry in SDB, in
or-der of scheduled departure
time

Map file offset - long

† 0 = Any carrier, with neither departure nor arrival in the U.S.
 1 = Domestic carrier with both departure and arrival in the U. S.
 2 = Domestic carrier, with either departure or arrival, but not both, in the U.S.
 3 = International carrier, with both departure and arrival in the U.S.
 4 = International carrier, with either departure or arrival, but not both, in the

U.S.

‡ Bit 0 = Sunday (least significant bit)
 Bit 1 = Monday
 Bit 2 = Tuesday
 Bit 3 = Wednesday
 Bit 4 = Thursday
 Bit 5 = Friday
 Bit 6 = Saturday (most significant bit)

§ Item is not being used at this time

ETMS System Design Document
Version 6.0

30-9

Table 30-2. OAG Data File Structure

OAG Data file
Directory Name: /atms_data/oag/yy_mm_dd Contents: Contains OAG-furnished list of all flight data

File Names: oag.yy_mm_dd

Data Item Column No. Unit/Format Range Var.Type

departure_country_code 1 aaaa string4

departure airport 5 aaaa string4

GMT_departure_time 10 aaaa string4

arrival_country_code 14 aaaa string4

arrival airport 18 aaaa string4

GMT_arrival_time 23 aaaa string4

flag_code 27 a char

acft_name 28 aaaa string4

airline 32 aaa string3

flight_no 35 aaaaa string5

flies_on 40 aaaaaaa string7

taxi_intra 47 a char

effective_date 48 aaaa string4

discontinue_date 52 aaaa string4

NOTE: The departure and arrival airport fields are both followed by a blank. Thus these fields
can be easily expanded to take 5-character airport codes, whenever that may happen.

Make_sdb is set up to create an SDB either from scratch from the current OAG data file, or
by merging the information from the current OAG data file with the cancel and inhibit data
from a previous SDB. To accomplish this, and also to meet the requirements that some of
the files be in particular sorted order, most of the tables maintained by make_sdb are in-
memory hash tables; they are loaded as the data is read in and generally are sorted by using a
pointer array just before they are written out. Since the previous SDB contains indexes to the
previous aircraft type and airline hash map files, the previous version of these files must be
loaded into the in-memory hash tables; the linear probing will take care of any collisions with
new entries from the current OAG data file. The in-memory schedule hash tables (there is
also an auxiliary table with OAG airline, aircraft type, airport, and country codes) are loaded
first with all the data from the current OAG data file, and then with the appropriate data from
the previous SDB.

The OAG file has the GMT times for departure and arrival, and the days of service based on
the GMT date.

ETMS System Design Document
Version 6.0

30-10

30.2.1 The Make_sdb Program

The make_sdb program creates the schedule file. Table 30-1 shows the data structure of the
schedule file. To accomplish its task, the make_sdb program invokes routines to get its
arguments, to open existing ASCII and map files for reading and/or updating, to create output
ASCII and map files, and to initialize its in-memory hash tables. After that, make_sdb runs in
a very large loop where it reads and processes each record from the OAG data file. When it
has finished with that file, make_sdb sorts and outputs various map files, reads the
information form the old SDB map files if this is a merge run, and sorts and writes out the
SDB and the arrival index map files.

The data file is created by OAG with the records sorted by flight ID and by departure airport
(in EBCDIC, not ASCII) order. Records for air carriers for which OAG does not have an
FAA air carrier code appear in the data file after the valid FAA codes, as the OAG two-
character air carrier code, followed by a blank. Make_sdb eventually rejects all such records,
unless it finds a translation for the air carrier code in the dual designated carrier file.

The information on the OAG data file was written in EBCDIC, but it is already in ASCII when
it is received via the Internet. The flight ID generally consists of the three-character air
carrier name and one to four digits (the least significant digit may be replaced by a letter, the
so-called leg indicator). For convenience and speed, make_sdb converts the flight number
and the country code (from the time that they are read in) to integer and then carries both
items as string as well as integer variables.

The main function of the various initialization routines is to set one of the fields of the in-
memory hash tables to a constant. After performing the initializations and loading the in-
memory hash tables from the old SDB, the make_sdb program runs in a large loop, where it
reads and processes each record from the OAG data file until it reaches that file's end of file,
or it encounters an I/O error, or some in-memory hash table gets too full, or it reaches the
record count limit maxlines in test mode.

For each record, make_sdb

(1) Saves the air carrier code to a local variable.

(2) Saves the numeric portion of the flight ID both as string and integer variables.

(3) Saves the departure country code both as string and integer variables.

(4) Invokes the add_eff_dis_index_to_hst routine to add the effective/discontinue
dates to its in-memory hash table.

(5) Converts the departure and arrival airports to their primary names.

(6) Invokes the accept_flight routine which performs data validation:

(a) If the discontinue date is earlier than the processing date, log the message
and set a flag to skip the current record.

ETMS System Design Document
Version 6.0

30-11

(b) If the departure airport is the same as the arrival airport, log the message
and continue.

(c) If either the departure or arrival times (or both) are non-numeric (for
example, FLAG or FUEL), log the message and set a flag to skip the
current record.

(d) Invokes the get_flight_data routine to get flight_code which defines
whether this is a valid airport pair, and whether the route is defined,
though perhaps not for this airline and/or aircraft type.

(e) Based on the above flight_code , or the OAG flag_code (Column 27 in
Table 30-2) or the country data read from the country_airport.input file
(which also includes airport, airport pair and/or airline selection), log
informative messages if there are no routes for this flight, or the data is
inconsistent; set a flag to silently skip the record if the flight does not
depart or arrive in the U.S., or does not depart or arrive in Canada, or
there are no routes for this airport pair (implying that a similar flight did
not cross the National Air Space within the last week). After that,
sequentially check the flight_code value, and whether the departure
country code, the arrival country code, the departure airport, the arrival
airport, the airport pair, or the airline are among those that were read in
from the country_airport.input file. If any of the above conditions is true,
skip the rest of the tests, and flag the record as acceptable.

(7) If the accept_flight routine has flagged the record for rejection, make_sdb
continues by trying to read and process the next record. Otherwise, it invokes
the add_airport_to_hst routine to add the departure and/or arrival airports to its
in-memory hash table.

(8) It invokes the add_acft_name_to_hst routine to add the aircraft type to its in-
memory hash table.

(9) It invokes the convert_dual_designated_carrier routine (See Section 30.2.1.6)
to change the air carrier name and/or flight number to the dual designated
carrier name if the flight ID is in the specified range. The routine is recursive,
but only one level of substitution is performed. The original air carrier codes
and flight IDs in the input file must be in sort order.

(10) If the flight is one of those for which the OAG did not have the FAA airline
name (i.e., the airline name is a two-character OAG air carrier code), make_sdb
logs the message and skips the record.

(11) It invokes the apply_alpha_suffixes routine to add alpha suffixes to the
specified flight IDs (the original PanAm airline, PAA, used to flag specific legs
of certain flights by adding a specific alpha suffix. At present, the input file is
empty).

ETMS System Design Document
Version 6.0

30-12

(12) It invokes the apply_fid_number_change routine to substitute the flight ID
number (and possibly air carrier code) for specified flight IDs (United Air Lines,
UAL, changes flight IDs to identify the legs of certain flights which are flown by
other carriers). The original air carrier codes and flight IDs in the input file must
be in sort order.

(13) It invokes the combine_for_hashing routine to combine the air carrier name,
the flight ID and the departure airport into a string, which is then used as the
key into the SDB hash table.

(14) The flight_id_hash_search routine returns the value of the index into the SDB
hash table, and determines if a record with the specified key already exists. If
make_sdb finds the flight ID under the original flight ID as well as under the
converted flight ID the flight ID must be a duplicate, in which case make_sdb
logs the message and skips the current record.

(15) The count_flight_days routine returns the number of scheduled flights over the
time period covered by the OAG data file. The number of scheduled flights is
less than zero if the effective date is after the discontinue date. If the number
of flights is less than or equal to zero, or greater than the number of days over
the time period, make_sdb logs the error and skips the current record.

(16) It invokes the update_sdb_record_in_hst (See Section 30.2.1.7) routine to store
all the information about the specified flight ID into the in-memory hash table.

(17) If the in-memory schedule hash table is getting too full, make_sdb logs the
message, exits the loop, and start the OAG data file end-of-file processing.
Otherwise it continues looping until it reaches end-of-file.

This terminates the loop portion of make_sdb. Then make_sdb closes the OAG data file, and
invokes a number of routines, each one of which sorts the respective in-memory hash tables,
writes out the map file and possibly the source file, and closes them. Sorting is accomplished
by using a pointer array, so that large records do not have to be interchanged. The pointer
array is initialized so that the content of an array element is equal to its index value; then the
sort routines use the quicksort algorithm to interchange the contents of the pointer array
elements, and the hash table is written out in the order of the values of the pointer array.

If this is a merge run, make_sdb invokes load_hst_from_old_sdb, which uses find_old_can-
cel_inhibit to find whether the cancel or inhibit information in the old SDB applies to any of
the records in the current SDB. When it has finished going through all the records in the old
SDB, load_hst_from_old_sdb closes all the old map files. In either case, make_sdb invokes
close_eff_dis_ll_mapfile to write out and close the effective/discontinue dates linked list map
file. It invokes close_sdb_mapfile to close out the SDB schedule map file, the routes map
files, the aircraft categories map files, the error log file, and the airport alias map file. Finally,
it reports a summary of the warnings and errors written to the error log file.

ETMS System Design Document
Version 6.0

30-13

30.2.1.1 The Julian_date routine

The julian_date routine returns the Julian date which corresponds to the date specified in its
input arguments. The Julian date is an unsigned integer equal to the number of days elapsed
since the 0th of January, 1980, and will keep increasing monotonically until 05 June 2159.

30.2.1.2 The Interpret_header_line routine

The first four lines of the OAG data file contain the effective start date of the OAG data file
and the copyright notice. The discontinue date is approximately 30 days after the effective
start date; by convention, it is the previous day of the next month. The only exceptions occur
near the Daylight Savings Time switch dates, since OAG does not place in the file records
which would span the DST/STD time switch date. The reason is that flights schedules are
based on local time, so the GMT departure time of flights changes by one hour on the
DST/STD time switch dates. The switch occurs at 2 am local time on the first Sunday in
April and the last Sunday in October. Thus the 18 March 1998 file has a valid time span of
only 17 days and the 01 April 1998 file has an effective start date of 05 April 1998.
Interpret_header_line returns the effective and discontinue dates as Julian dates, which were
used by make_sdb when those fields were blank in the OAG data file. It also returns the
dates as integers and the effective date string in the form yy_mm_dd, which is used by
make_sdb and other programs to form output file names. Interpret_header_line also verifies
that the internal effective start date agrees with the date portion of the OAG data filename; if
not, it issues a warning.

30.2.1.3 The Get_dual_designated_carrier routine

The get_dual_designated_carrier routine opens the file containing the original air carrier
name, flight ID range, substituted air carrier name, the value by which the flight ID is to be
decremented and the jet flight flag. It reads that data, ignoring lines that start with a blank or
other comment character, loading it into the dual designated carrier record array. Then, it
closes the file and creates a last record with an original air carrier name of ~ ~ ~ , to ensure
that it is alphabetically greater than any real air carrier name. This simplifies the code in the
convert_dual_designated_carrier routine (See Section 30.2.1.6).

30.2.1.4 The Open_existing_mapfiles routine

The open_existing_mapfiles routine tries to open the old map files, if they exist, for reading.
It is not considered a fatal error if they do not exist, since this execution of make_sdb may
not involve merging of the current SDB with an old SDB. If the old SDB map file does not
exist, the variable no_(specific_file_name) is set to True. If any one of the relevant
variables is True, the merging with the old SDB is abandoned with a warning message, and
creation of the SDB (with no merging) continues.

30.2.1.5 The Init_eff_dis_ll routine

ETMS System Design Document
Version 6.0

30-14

The init_eff_dis_ll routine initializes the eff_dis_ll map file by storing the file length into the
first 4 bytes of the file. This has the advantage that an erroneous use of the NIL pointer does
not return apparently valid data.

30.2.1.6 The Convert_dual_designated_carrier routine

If the air carrier name is the same and the flight ID of the current record is within the flight
ID range of the dual designated carrier array, the convert_dual_designated_carrier routine
converts the air carrier name to the substituted air carrier name, and decrements the flight ID
by the specified offset (which is most frequently 0). Since the OAG data file is sorted by
flight ID, and since the dual designated carrier file is similarly sorted, the search loop can be
sped up by starting the index at the last successful search index, and by exiting the loop when
the value in the dual designated carrier array, given by the search index, is (alphabetically)
greater than the flight ID. Convert_dual_designated_carrier does not decrement the flight ID
by the offset if the aircraft type is a jet, and the jet flight flag in the dual designated carrier
record is set to JF (the default value is two spaces).

Convert_dual_designated_carrier invokes the add_airline_to_hst routine to add the (original)
air carrier name to the airline in-memory hash table and invokes the add_ddc_airline_to_hst
routine to add the converted air carrier name to the airline in-memory hash table.

30.2.1.7 The Update_sdb_record_in_hst routine

If the flight ID, from the current record in the OAG data file has not been previously
encountered, the update_sdb_record_in_hst routine load the in-memory hash table with all the
relevant information from the OAG data file record. The update_sdb_record_in_hst routine
invokes the validate_ete routine to verify the estimated time en route, invokes the
get_acft_cat_data routine to get the index to the aircraft categories, and packs and stores the
bits into the status bits word.

On the other hand, if the flight ID from the current record in the OAG data file has been
previously encountered, the record is either a duplicate or differs in both of the
effective/discontinue dates. The update_sdb_record_in_hst routine invokes the
add_eff_dis_ll_to_mapfile routine (see immediately below), to store the date pair into the
effective/discontinue dates linked list, and then it stores the offset.

30.2.1.8 The Add_eff_dis_ll_to_mapfile routine

The add_eff_dis_ll_to_mapfile routine starts with the current effective/discontinue dates
linked list offset from the SDB to find the values of the date pair. Under normal
circumstances, there will be no overlap between the current date pair and any date pair for
this flight_id in the effective/discontinue dates linked list. Thus, the current date pair should
be inserted before or appended after the current link. If the add_eff_dis_ll_to_mapfile
routine finds that both dates of the current date pair are the same as those in the linked list,
the record must be a duplicate, and it returns the negative of the offset. If it finds either form

ETMS System Design Document
Version 6.0

30-15

of date overlap, it returns a small negative number. Otherwise, it goes through the date pair
linked list until it finds either the end of the list (in which case, it will append the date pair
there) or it finds that the current dates pair is earlier than the linked list date pair (in which
case it will insert the date pair before it).

30.2.1.9 The Sort_write_sdb_mapfile routine

The sort_write_sdb_mapfile routine initializes consecutive elements in a pointer array to the
index value of the non-empty SDB schedule record. Then it uses a quicksort routine to sort
the pointer array. The offset to the next SDB record is loaded into the in-memory hash table
and the NIL_ENTRY value is loaded into the next_SDB offset of the last record. The first
record is a dummy: the only valid data in it are the offset to the next (the first real SDB)
record and event_route_off, which contains the actual length of the SDB map file.
Sort_write_sdb_mapfile then loads the map file with data and truncates it at 120% of the
current size (to allow for growth without having to extend the file), and closes it.

Error Handling

Make_sdb is a batch process, so it terminates with an error message if it cannot open the file
of file pathnames, or any of its input files, or cannot create the output map files. It terminates
with an error message when any of the hash files become 85% full, or if there is any data
conversion error.

30.3 The Sdb_create_indices Process

Purpose

The sdb_create_indices process is executed after make_sdb is run to create all the indexes for
the SDB. Indexes are created for the time table, flight ID, air carrier, arrival airports, and
departure airports. Sdb_create_indices also creates the empty list file for added flights, and, if
they have not already been created by make_sdb, the empty canceled flights and inhibited
flights list files.

Execution Control

Sdb_create_indices is usually executed right after make_sdb by the shell script
build_sdb.313.ksh. Sdb_create_indices requires one input parameter, the name of the file
which contains the pathnames of the input and output files to be used.

Input

Sdb_create_indices reads the following input files:

• SDB file.

ETMS System Design Document
Version 6.0

30-16

• Arrival times.

The arrival times are contained in a file that is ordered by arrival time and only contains
offsets into the SDB map file for each flight in the SDB. This file was created by make_sdb.
The SDB file is also created by make_sdb and contains detailed information about each flight
and is ordered by departure time.

Output

Sdb_create_indices writes the following output files:

• Time table

• Flight ID index

• Added flights list

• Inhibited flights list

• Canceled flight list

• Air carrier index

• Arrival airport index

• Departure airport index

The time table is a list of offsets to the flights in the SDB for the beginning of each time
bucket (15-minute time interval). Each record in the SDB contains offsets to the next flight
by departure time. The time table is used as an entry into the SDB for the time bucket
wanted, and then the offsets in the SDB itself are used for any additional, desired flights. The
structure of the time table is shown in Figure 30-2.

ETMS System Design Document
Version 6.0

30-17

0 Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

1

2

3

4

94

95
…

Index on Departure Time

One Dimensional
Array of Pointers

15-minute Time Buckets
Index

(00:00 to 23:45)
Offset to first flight in
each time bucket of SDB

Figure 30-2. Time Table Index Structure

The flight ID index is a hash map file (the flight ID is the hash key) which contains offsets to
a linked list of the legs for that flight. The linked list contains offsets to the SDB for each leg
of the flight. The structure of the flight ID index is shown in Figure 30-3 and Table 30-3.
The linked list data structure is in Table 30-4.

ETMS System Design Document
Version 6.0

30-18

Hash on Flight ID

Flight ID Hash Table

Ptr List

AAL1234 Ptr

Linked List of ptrs to SDB

Ptr
SDB

Ptr
LL

Ptr
SDB

Ptr
SDB

Ptr
LL -1

of the separate legs of flight AAL1234

Figure 30-3. Flight ID Index Structure

The air carrier index is a hash map file (the air carrier name is the hash key) which contains
offsets to a linked list of all the flights of that air carrier. Each entry in the linked list of flights
has an offset to a flight in the SDB. The structure of this index is shown in Figure 30-4 and
Table 30-5. The linked list data structure is in Table 30-4.

The arrival airport index and the departure airport index have the same structure. The index is
a hash map file (the airport name is the hash key) which contains offsets to a timetable which
consists of one-hour time buckets. Each entry in the time table points to a linked list of
flights that arrive or depart from that airport. Each entry in the linked list of flights has an
offset to a flight in the SDB. The structure of this index is shown in Figure 30-5 and Table
30-6. The linked list data structure is in Table 30-4.

The added flights list, the inhibited flights list, and the canceled flights list map files each
contain a linked list of the flights that have been added, inhibited, or canceled, respectively.
Each linked list entry contains the flight ID, the offset to the SDB record, and the Julian date
and the time of the addition, inhibition, or cancellation. The Julian date is used to determine
how long a flight has been canceled, so that it can be activated after 24 hours. The structure
of the added, inhibited, and canceled flights is shown in Figure 30-6 and Table 30-7.

ETMS System Design Document
Version 6.0

30-19

Table 30-3. Flight ID Hash Table Data Structure

Flight ID Hash Table
Library Name: sdb_openlib Purpose: Hash Table for Flight IDs

 flight_id.map
Element Name: sdb.h

Data Item Definition Unit/Format Range Var.Type/Bits

flight_id Flight ID aaannnn - string7

flt_id_ll_offset Offset to record in linked list file Map file offset - long

Table 30-4. Linked List Data Structure

Linked List Data Structure for flight id, air carrier, arr airport, and
dep_airport

Library Name: sdb_openlib Purpose: Linked list
 Flight_id.map, Air_Carrier.map, Arr_Airport.map,
 Dep_Airport.map

Element Name: sdb.h

Data Item Definition Unit/Format Range Var.Type/Bits

 Record # 1
SDB_Red_Offset Not used in first (dummy)

record
Map file offset - long

LL_Offset Offst to next free record in file Map file offset - long

 Record # 2 - n
SDB_Red_Offset Offset to record in SDB file Map file offset - long

LL_Offset Offst to next record on linked
list

Map file offset - long

ETMS System Design Document
Version 6.0

30-20

Hash on Air Carrier

Air Carrier Hash Table

Ptr List

AAL Ptr

Linked List of ptrs to SDB

Ptr
SDB

Ptr
LL

Ptr
SDB

Ptr
SDB

Ptr
LL -1

of all the flights of Air Carrier AAL

Figure 30-4. Air Carrier Index Structure

Linked List of ptrs to SDB of flights

Ptr
SDB

Ptr
LL

Ptr
SDB

Ptr
SDB

Ptr
LL -1

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

Ptr

0

1

2

3

4

22

23

…

Name Ptr

Hash Table

Hash on Arrival or Departure Airport Name

in time bucket 00:00 to 00:59

Time Table
One Dimensional

Array of Pointers
1 hour time buckets

Index
(00:00 to 23:00) Ptr to List

Figure 30-5. Departure Airport and Arrival Airport Index Structure

ETMS System Design Document
Version 6.0

30-21

Table 30-5. Air Carrier Data Structure

Air_carrier
Library Name: sdb_openlib Purpose: Air carrier Hash Table

 air_carrier.map
Element Name: sdb.h

Data Item Definition Unit/Format Range Var.Type/Bits

air_carrier_nm Air carrier name aaa - string3

ll_offset Offset to record in linked list file Map file offset - long

Table 30-6. Departure Airport and Arrival Data Structure

Departure Airport and Arrival Airport
Library Name: sdb_openlib Purpose: Arrival Airport or Departure Airport Hash Table

 arr_airport.map or dep_airport.map
Element Name: sdb.h

Data Item Definition Unit/Format Range Var.Type/Bits

arr_arriport_nm or
dep_airport_nm

Name of arrival or departure
airport

aaaa - string4

tt_offset Offset to record in time table file Map file offset - long

SDB

Flt
ID

SDB
Offset

Julian
Date

Time

Next
LL

-1

Flt
ID

Flt
ID

SDB
Offset

SDB
Offset

Julian
Date

Julian
Date

Time Time

Next
LL

-1

Prev
LL

Prev
LL

Figure 30-6. Data Structure for Additions, Cancellations, or Inhibitions
Linked List

ETMS System Design Document
Version 6.0

30-22

ETMS System Design Document
Version 6.0

30-23

Table 30-7. Add, Cancel, and Inhibit Flight List Files

Add, Cancel, and Inhibit Flight List Files
Library Name: sdb_openlib Purpose: Contains linked list of flights that have

 been added, canceled, or inhibited
 add.map, cancel.map, inhibit.map

Element Name: sdb.h

Data Item Definition Unit/Format Range Var.Type/Bits

 Record # 1
free_offset Offset to next free record Map file offset - long

first_offset Offset to first record on linked
list

Map file offset - long

last_offset Offset to last record on linked
list

Map file offset - long

dummy Dummy to make this record the
length of the other records

- - string11

 Record # 2 - n
flight_id Flight ID to be added, canceled,

or inhibited
aaannnn - string7

sdb_offset Offset to flight record in SDB
map file

Map file offset - long

julian_date Julian date entered into index Julian date from
1/1/80

0 – 65535 unsigned short

time Time of day entered into index Hours and minutes 0 – 2359 short

next_ll Offset to next record in linked
list

Map file offset - long

prev_ll Offset to previous record in
linked list

Map file offset - long

Processing

Sdb_create_indices opens the file containing the names of the input and output files and reads
the file pathnames. The SDB file is then opened. The files needed for each index are opened
in turn. The routine to create that index is invoked, and the index is created. The files for
that index are closed, and, finally, the SDB file is closed.

30.3.1 The Sdb_create_list routine

The sdb_create_list routine is invoked three times. It is invoked for additions, inhibitions, and
cancellations. Each time, it searches through the SDB to determine the flights that have their
status bit set for the type of action it is searching for. Each flight with the particular status bit
set is then added to the linked list in alphabetical order by flight ID.

30.3.1.1 The Create_time_table routine

The create_time_table routine searches through the SDB table for the first flight in each 15-
minute time bucket and adds the offset for that flight to the time table. Because the SDB is
ordered by departure time, once the offset to the first flight in the time bucket is known, the
rest of the flights in that time bucket can be found by following the order in the SDB itself.

ETMS System Design Document
Version 6.0

30-24

30.3.1.2 The Create_flight_id routine

The create_flight_id searches through the SDB in reverse chronological order and puts each
flight ID in the hash map file. The reverse order is used so that, as each leg of the flight is
put at the front of the linked list, the linked list will be in correct chronological order. If this
is the first leg for this flight ID, the flight ID and the offset to this flight ID in the linked list
map file are put into the hash map file. The leg of this flight is then put at the beginning of the
linked list for this flight.

30.3.1.3 The Create_air_carrier routine

The create_air_carrier routine searches through the SDB in reverse order. The reverse order
is used so that, as each flight for this air carrier is put at the front of the linked list, the linked
list will be in correct chronological order. If this is the first flight for this air carrier, the air
carrier name and the offset to this air carrier in the linked list map file are put into the hash
map file, and the offset is saved at the hash index in the hold_prev_link array. If this is not
the first flight for this air carrier, the flight is added at the beginning of the linked list; the
offset in the hash map file is replaced, and saved in the array for the next occurrence of this
air carrier.

30.3.1.4 The Create_arr_airport routine

The create_arr_airport routine uses the auxiliary arrival time file, which is created by
make_sdb and contains a list of offsets to the SDB in arrival time order. The routine uses this
file to go through the SDB in reverse arrival time order. The reverse order search through the
auxiliary arrival airport file is used so that, as each flight is put at the front of the linked list,
the linked list will be in correct chronological order. If this is the first flight for this airport,
the airport name and an offset to the beginning of the time table for this airport are put into
the hash map file. If this is not the first flight for this airport, the offset in the hash map file
to the previously created time table is used. An offset is then put in the proper time bucket
within the time table to the beginning of the linked list of flights for that time bucket if there is
no previous entry in that time bucket. If the offset is already in the appropriate time bucket, it
is used to gain access to the previously created linked list. Finally, the flight is added at the
beginning of the linked list.

30.3.1.5 The Create_dep_airport routine

The create_dep_airport routine searches through the SDB in reverse order. The reverse
order search through the SDB is used so that, as each flight is put at the front of the linked
list, the linked list will be in correct chronological order. If this is the first flight for this
airport, the airport name and an offset to the beginning of the time table for this airport are put
into the hash map file. If this is not the first flight for this airport, the offset in the hash map
file to the previously created time table is used. An offset is then put in the proper time
bucket within the time table to the beginning of the linked list of flights for that time bucket if
there is no previous entry in that time bucket. If the offset is already in the appropriate time

ETMS System Design Document
Version 6.0

30-25

bucket, it is used to gain access to the previously created linked list. Finally, the flight is added
at the beginning of the linked list.

Error Handling

Sdb_create_indices is a batch process, so it terminates with an error message if it cannot
open the file of file pathnames or any of its input files. It terminates with an error message
when any of the hash files become 85% full.

